Variable selection for functional regression models via the regularization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection for Regression Models

A simple method for subset selection of independent variables in regression models is proposed. We expand the usual regression equation to an equation that incorporates all possible subsets of predictors by adding indicator variables as parameters. The vector of indicator variables dictates which predictors to include. Several choices of priors can be employed for the unknown regression coeecie...

متن کامل

Variable Selection for General Index Models via Sliced Inverse Regression

Variable selection, also known as feature selection in machine learning, plays an important role in modeling high dimensional data and is key to data-driven scientific discoveries. We consider here the problem of detecting influential variables under the general index model, in which the response is dependent of predictors through an unknown function of one or more linear combinations of them. ...

متن کامل

Automatic Smoothing and Variable Selection via Regularization

This thesis focuses on developing computational methods and the general theory of automatic smoothing and variable selection via regularization. Methods of regularization are a commonly used technique to get stable solution to ill-posed problems such as nonparametric regression and classification. In recent years, methods of regularization have also been successfully introduced to address a cla...

متن کامل

Variable Selection for Multivariate Logistic Regression Models

In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...

متن کامل

Variable selection for varying coefficient models with the sparse regularization

Varying-coefficient models are useful tools for analyzing longitudinal data. They can effectively describe a relationship between predictors and responses repeatedly measured. We consider the problem of selecting variables in the varying-coefficient models via the adaptive elastic net regularization. Coefficients given as functions are expressed by basis expansions, and then parameters involved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2011

ISSN: 0167-9473

DOI: 10.1016/j.csda.2011.06.016